Polars of Real Singular Plane Curves

نویسنده

  • HEIDI CAMILLA MORK
چکیده

Polar varieties have in recent years been used by Bank, Giusti, Heintz, Mbakop, and Pardo, and by Safey El Din and Schost, to find efficient procedures for determining points on all real components of a given non-singular algebraic variety. In this note we review the classical notion of polars and polar varieties, as well as the construction of what we here call reciprocal polar varieties. In particular we consider the case of real affine plane curves, and we give conditions for when the polar varieties of singular curves contain points on all real components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Structure Theorem for the Polars of Unitarily Invariant Norms

The unitarily invariant norms of matrices, or operators, are essentially the symmetric norms of their singular values. A subclass of these norms depending upon only a few largest of the singular values is considered, and the polars of these norms are characterized. The result is then used to obtain generalizations of some well-known inequalities. The implications for operators on infinite-dimen...

متن کامل

On the enumeration of complex plane curves with two singular points

We study equi-singular strata of curves with two singular points of prescribed types. The method of our previous work [Kerner04] is generalized to this case. This allows to solve the enumerative problem for plane curves with two singular points of linear singularity types. In the general case this reduces the enumerative questions to the problem of collision of the two singular points. The meth...

متن کامل

Multi-Harnack smoothings of real plane branches

The 16th problem of Hilbert addresses the determination and the understanding of the possible topological types of smooth real algebraic curves of a given degree in the projective planeRP . This paper is concerned with a local version of this problem: given a germ (C, 0) of real algebraic plane curve singularity, determine the possible topological types of the smoothings of C. A smoothing of C ...

متن کامل

On Meromorphic Parameterizations of Real Algebraic Curves

A singular flat geometry may be canonically assigned to a real algebraic curve Γ; namely, via analytic continuation of unit speed parameterization of the real locus ΓR. Globally, the metric ρ = |Q| = |q(z)|dzdz̄ is given by the meromorphic quadratic differential Q on Γ induced by the standard complex form dx + dy on C = {(x, y)}. By considering basic properties of Q, we show that the condition f...

متن کامل

Complexity of Plane and Spherical Curves

We show that the maximal number of singular moves required to pass between any two regularly homotopic plane or spherical curves with at most n crossings grows quadratically with respect to n. Furthermore, for any two regularly homotopic curves with at most n crossings, there exists such a sequence of singular moves, satisfying the quadratic bound, for which all curves along the way have at mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008